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Abstract  

In this paper, the necessary similarity 
conditions, or scaling laws, for free vibrations 
of orthogonally stiffened cylindrical shells are 
developed using similitude theory. The Donnell-
type nonlinear strain-displacement relations 
along with smearing theory are used to model 
the structure. Then the principle of virtual work 
is used to analyze the free vibration of the 
stiffened shell. After nondimensionalizing the 
derived formulations, the scaling laws are 
developed, using similitude theory. Then, 
different examples are solved to validate the 
scaling laws numerically and experimentally. 
The obtained results show the effectiveness of 
the derived formulations. 

1. Introduction 

Although designers employ most powerful 
analysis tools, using the most elaborate 
electronic computers, actual testing is required 
in order to extract some input design parameters 
and also to ensure the proper functioning of the 
designed system [1]. Structural dynamic 
properties of aerospace structures are one of 
fundamental requirements in designing such 
structures and evaluating their control systems 
effectiveness. Finding structural dynamic 
properties-often including natural frequencies, 
mode shapes, and damping ratios- through 
performing ground vibration tests in case of 
heavy and huge aerospace structures is very 
difficult to do and also requires advanced and 
huge test instrumentations and considerable 

expense and time. But through testing a small-
scale model of the structure, which simulates 
the behavior of its prototype exactly, not only 
modal parameters can be extracted, but also the 
reliability and accuracy of assumptions used in 
numerical and analytical models can be verified. 
Besides, the designers can access some useful 
data during designing and pre-manufacturing 
processes. Through fabricating and testing such 
small-scale models, design modifications and 
revisions will be possible without costly and 
time consuming full-scale fabrication and tests. 
Scaling laws provide the relationship between a 
full scale structure and its scale models and can 
be used to extrapolate the experimental data of a 
small, inexpensive, and easily tested model into 
design information for the large prototype [2]. 
Meanwhile, considering the significant roll of 
stiffened cylindrical shells in various types of 
aerospace structures, practical applications of 
scaled down stiffened cylindrical shells and the 
importance of establishing a similarity and 
finding proper scaling laws will be evident. Due 
to the large number of design parameters in 
stiffened cylindrical shells, the identification of 
the principal scaling laws through conventional 
method of dimensional analysis and pi-theorem 
is tedious. While similitude theory based on the 
governing equations of the structural system is 
more direct and simpler in execution, but some 
limitations may be encountered during the 
designing of small-scale stiffened shells, both 
from a fabrication and an economic viewpoint. 
Some of these difficulties and limitations are 
discussed in this paper and some solutions are 
proposed to solve them. 
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Some studies particularly concerning the use of 
scaled down shell structures have been 
conducted in the past. In 1962, Ezra [3] 
presented a study based on dimensional 
analysis, for the buckling behavior of scaled 
down models of shell structures subjected to 
impulsive loads. A similar investigation was 
presented in 1964 by Morgen[4] for an 
orthotropic cylinder subjected to different static 
loads. In 1971, Soedel[5] investigated similitude 
requirements for vibrating thin shells. In 1994, 
Buckling stability prediction of laminated 
cylindrical shells using scaled down models and 
based on partial similitude was done in an 
investigation by Rezaeepazhand et al. [6]. In 
1996, prediction of shell vibration response in 
cross-ply cylindrical shells using scaled down 
models, based on partial similitude was 
accomplished by the same authors [7]. In a 
similar investigation presented in 1997 by the 
same authors, vibration response of laminated 
cylindrical shells with double curvature is 
investigated based on structural similitude [8]. 
In 2005, effect of extensive use of welding on 
buckling behavior of large cylindrical shells 
constructed from a large number of curved 
panels, is investigated experimentally using 
scale models by Teng and Lin[9]. In 2007, a 
procedure is presented by R. Oshiro and M. 
alves for correction of distortion due to material 
strain rate sensitivity in the scaling laws of 
cylindrical shells under axial impact [10].  

Many research activities have been 
conducted on scale-down modeling of dynamic 
and static behavior of other structural systems. 
In most of these researches similitude theory is 
discussed based on dimensional analysis. 
Among the most recent of these works is an 
investigation done in 2005 by P. Singhatanadgid 
and V. Ungbhakorn in which similitude 
invariants and scaling laws for buckling of polar 
orthotropic annular plates subjected to radial 
compressive load and torsional load is derived 
[11]. The similitude transformation is applied to 
the governing differential equation directly 
resulting in a scaling law for buckling load of 
annular plates and the similarity conditions 
between a model and a prototype. In 2006, J. J. 
Wu predicted the vibration characteristics of an 
elastically supported full-size flat plate 

subjected to circular-moving loads from those 
of its scale model using the associated scaling 
laws [12]. The similarity conditions between the 
full-size system and its complete-similitude 
scale model were derived from their equations 
of motion. In another work done in 2007 by the 
same author the lateral vibration characteristics 
of the full-size rotor-bearing system is predicted 
by using the scale rotor-bearing model and the 
associated scaling laws [13]. The scaling laws 
are derived both from the equations of motion 
and the theory of dimensional analysis. 

In the current investigation, scaling laws in 
free vibration of orthogonally stiffened 
cylindrical shells are developed through direct 
use of the governing equations of system. The 
Donnel-type nonlinear strains along with 
Hamilton s principle are used to derive 
equations of motion of the shell. Then the 
nondimensional solution is developed and used 
to derive the scaling laws. In order to overcome 
the difficulties encountered in fabricating small 
scaled orthogonally stiffened cylindrical shells, 
designing equivalent sections for stiffeners and 
some other approaches, based on similitude 
theory were taken into consideration. Finally, a 
typical stiffened cylindrical shell and its 
equivalent scale model are fabricated and tested. 
Results comparison indicates that the small-
scale equivalent stiffened cylindrical shell can 
predict the behavior of its prototype accurately. 

2. Derivation of Equations of Motion Using 
Smearing 

There are two main approaches in vibration 
analysis of stiffened cylindrical shells; in the 
first approach, stiffened structure is replaced by 
an equivalent continuum and the effect of 
stiffeners is averaged or smeared out over the 
shell. Then one should just find a method for 
averaging the effect of discrete elements. 
Through this method, when the wave length of 
vibration is larger enough than the distance 
between stiffeners, very accurate results are 
achieved. But for vibrations having short wave 
length the second approach should be used, in 
which stiffener elements are treated as discrete 
elements [14]. Here, the stiffeners are not 
considered as discrete elements, but their effects 
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are averaged over the shell and the equilibrium 
equations and boundary conditions (BC s) then 
are determined by formulating the potential 
energy of the system and applying the principle 
of minimum potential energy. The nonlinear 
equations of motion of stiffened cylinder are 
obtained as 
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and a set of BC s (essential and natural BC s) to 
be satisfied at each end of the cylinder are 
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where ,x yM M , xyM

 

are the moment resultants 

per unit length and ,x yN N , xyN are the stress 

resultants per unit length[15]. M  is the averaged 
or smeared out mass per unit area of the 
stiffened cylinder. xN is a constant axial load 
resultant applied along the middle surface of 
isotropic shell, and p

 

is a constant hydrostatic 
pressure applied over the shell. For further 
information on derivation of equations of 
motion and definition of parameters, refer to the 
Appendix. 

3. Solution of the Equations of Motion 

The deformation associated with the vibration 
of a prestressed cylinder are divided into two 
parts; the first part denoted by a subscript A

 

is 
an axisymmetric, static prestressed deformation 
which occurs prior to excitation of one of the 
natural frequencies; the second part denoted by 
a subscript B

 

is a small additional deformation 
which occurs as a result of the excitation. In 
general, the equations of motion have variable 
coefficients and would be quite difficult to solve 
analytically for many cases, but if we assume 
that the prestress deformation Aw

 

is constant 
prior to the excitation and if we neglect the 
nonlinear terms in the additional deformations 
(subscriptB ), the solution to the equation will 

be greatly simplified. Therefore, the solution to 
the axisymmetric, static prestress equations are 

yA yN N pR

 
and xA xN N . Then, the 

linear equations of motion of the stiffened 
cylinder will be written as 
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where the moment resultants ,xB yBM M , and xyBM

 

and the stress resultants ,xB yBN N , and xyBN

 

are 

obtained through substituting displacements 
,B Bu v , Bw

 

into Eqs.(A-4), and neglecting the 
nonlinear terms. The simply supported BC s to 
be satisfied at each end 0,x L  are 

0B xB B xBw M v N

 

(4) 

Expressions for the displacements ,B Bu v , and 

Bw

 

which satisfy these BC s are given as 
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(5) 

where m

 

is longitudinal wave number, which is 
the number of axial half-waves and n

 

is 
circumferential wave number, which is the 
number of circumferential full waves. If Eqs. 
.(5) are substituted into Eqs.(3) and the 
determinent of the coefficients of ,u v , and w

 

is 
set equal to zero for a non-trivial solution, the 
equation of free vibrations of orthogonally 
stiffened cylindrical shell or frequancy equation 
will be obtained. 

4. Non-Dimensionalizing 

Performing the necessary transformations, the 
characteristic equation or the frequency 
equation so obtained, in terms of non-
dimensional parameters may be written as 
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where 

 
is the non-dimensional frequency. 

Other non-dimensional parameters used above, 
some encompass shell, stringers, and rings 
characteristics, and some others represent the 
mode shapes of the stiffened shell, and some 
express static loading of the stiffened shell. 
These non-dimensional parameters are defined 
below. 
The non-dimensional frequency, , is written as  

4 2
2 ML

D

 

(7)

 

where 

 

is the natural frequancy of the 
stiffened cylinder and L

 

is the length of the 
stiffened cylinder. The non-dimensional wave 
length, , is defined as follows [16] 

m R

L

 

(8)

 

The non-dimensional parameter , expresses 
the geometry of the shell and is defined as 
follows 

2

.
L
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The non-dimensional parameterS , is the ratio 
of the longitudinal stiffness of the stringers to 
the longitudinal stiffness of the shell element 
between the stringers. Similarly, the non-
dimensional parameter R

 

corresponds to the 
rings and is written as 

.
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The xF

 

and yF

 

non-dimensional parameters 

denote the external static loading of the shell 
along x

 

and y

 

directions, respectively and are 
defined as 
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where xN

 

is the constant axial force per unit 
length and yN

 

is the constant circumferential 

force per unit length, applied along middle 
surface of the shell. The non-dimensional 
parameters r

 

and s

 

express the ratio of the 

averaged bending stiffness of the rings and the 
stringers, respectively, to the bending stiffness 
of the shell. The expression for these parameters 
can be stated as 

.

r r
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In a similar way, the non-dimensional 
parameters r

 

and s

 

express the ratio of the 
averaged torsional stiffness of the rings and the 
stringers, respectively, to the bending stiffness 
of the shell and are defined as 

.

r r
r

s s
s

G J

Dl

G J

Dd

 

(13)

 

The parameters rE

 

and sE

 

are the non-
dimensional eccentricity of the rings and the 
stringers, respectively and can be stated as 

.
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The remaining non-dimensional parameters 
used in the Eq.(6), i.e. , r , s , and rs are 
somehow functions of the non-dimensional 
parameters defined above. Disregarding the 
functions , , ,r s

 

and rs , the functional 

equations of these parameters can be written as 
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5. Similarity Conditions for Free Vibrations 
of Stiffened Shells 

The frequency equation (Eq.(6)) may be written 
for model and prototype. By defining scale 
factor i , the variables of the prototype can be 
written as 

ip i imx x

 

(16)
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where subscripts m and p refer to model and 
prototype, respectively. The similarity 
conditions between model and prototype are 
determined by substitution of i imx into the 

frequency equation of the prototype and by 
requiring that the result be the frequency 
equation of the model (complete similarity)[17]. 
Performing the necessary manipulations, and 
omitting the redundant conditions, the necessary 
scaling laws (similarity conditions) for free 
vibrations of orthogonally stiffened cylindrical 
shells may be obtained as 

1

1 1 1

4 2 1

2 1 1

1 1 1

2 1

1 1

1 1

1

2 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.

s s

r r

x

s s

s s

r

y

r r

r r

s

n m

m R L

E A E h d

L DM

L R h

E A E h l

L DN

E I D d

G J D d

z R

L DN

E I D l

G J D l

z R

 

(17)

 

Eqs. (17) are necessary and sufficient 
conditions for complete similarity between 
model and prototype. When at least one of the 
similarity conditions cannot be satisfied, partial 
similarity is achieved and the model which has 
some relaxation in similarity conditions is called 
a distorted model. It is worth noting that the 
presented form of arranging the scaling laws is 
not unique. 

6. Applying Scaling Laws 

6.1. Replica Scaling 

Replica scaling means that all geometrical 
parameters of the prototype are exactly and 
precisely scaled by a same scale factor; in other 
words, a replica model is a physical model of 
the prototype which is geometrically similar in 
all aspects to the prototype and employs 
identically the same materials at similar 
locations [18]. Considering this, and taking the 
geometrical scale factor equal to k , and by 
assuming that the BC s and static loading 
conditions ( ,y p ) are similar for model and 

prototype, the inputs to the similarity problem 
are 
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Substituting Eqs. (18) into the similarity 
conditions, Eqs.(17), yields 

11 , .n m k

 

(19)

 

It means that if a stiffened cylindrical shell, 
having uniformly distributed stiffeners is 
geometrically scaled by a specific scale factor 
denoted by k , then the ratio of the frequency of 
any particular mode shape of the model to that 
of corresponding mode shape of the prototype 
will be equal to the inverse of geometrical scale 

factor, i.e., 1

k
. 

 

6.2. Design of Equivalent Cross Section for 
Stiffeners 

The purpose of utilizing the similarity 
conditions in this section is to design equivalent 
cross sections for stiffeners of a stiffened shell 
in such a way that without shell material and 
geometry, and stiffeners material and 
distribution, and also without BC s and loadings 
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being changed, the similar mode shapes in 
model and prototype have the same frequencies. 
Thus, the inputs to the similarity problem are 

1

1

1

1

1

1.

s r

s r

y x

n m

R L h d l

E E E

G G G

N N

D

 

(20)

 

For the similarity conditions of Eqs. (17) to 
hold, the following relations must be satisfied 
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Considering the expression for M

 

in 
Eqs.(A-4), and for all the relations of Eqs. (21) 
to be satisfied, it is sufficient that the stiffeners 
in model and prototype have the same cross 
section area, moment of inertia, polar moment 
of inertia, and eccentricity. Therefore, when 
fabricating the elaborations of the scaled 
stiffeners cross section profiles is difficult or 
impossible, equivalent stiffeners can be used 
that in spite of having simpler geometry, 
counterbalance the vibrational effects of the 
original stiffeners. The simplest geometry that 
can be used as equivalent cross section is a 
general T-shaped cross. The geometry of 
suchlike cross sections is specified by 4 
parameters, demonstrated in Fig. 1. Therefore, 
parameters , ,t b w , and h

 

can be obtained 
through solving a nonlinear system of 4 
equations and 4 unknowns. 

Fig. 1. T-Shaped Equivalent Cross section 

6.3. Using Dissimilar Material in Fabricating 
Both Shell and Stiffeners of the Scale Model 

Another problem encountered in fabricating a 
scaled down stiffened shell arises from 

stiffeners thickness being extremely small. 
approach to the problem of small thickness is 
that dissimilar material having better formability 
be used in fabricating scale model s shell and 
stiffeners. Through using such materials, 
smaller thicknesses will be achievable. The 
purpose of utilizing the similarity conditions in 
this section is to change the scale model 
material in such a way that shell and stiffeners 
geometry, and stiffeners distribution and also 
BC s do not undergo any change. Assuming the 
model and the prototype material having the 
same Poisson s ratio and also assuming not to 
have any static loadings, then the inputs to the 
similarity problem are 
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where k

 

is the ratio of modulus of elasticity in 
model to that of the prototype, and k

 

is the 
ratio of model density (or average mass per 
area) to that of the prototype. Considering the 
assumptions above and for the similarity 
conditions of Eqs. (17) to hold, the following 
relations must be satisfied 

1 1

2 2

1

.

n m

k k

 

(23)

 

Thus, in the cases where fabricating the 
scaled model is impossible due to extremely 
small thicknesses, it is possible to use dissimilar 
materials having better formability in 
fabricating the model.  

7. Validation of the Scaling Laws through 
Fabricating and Modal Testing of a Stiffened 
Shell and Its Equivalent Scale Model 

For the purpose of experimental validation of 
the methodology as applied here, two 
cylindrical shells are fabricated. The first shell 
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denoted as prototype is a stiffened cylindrical 
shell with the diameter being 1.25m and the 
length of 1.03m and the thickness of 1.5mm , 
made of aluminum alloy, having 2 equally 
spaced internal Z -shaped ribs and 8 equally 
spaced internal -shaped stringers. The second 

shell denoted as model is a 1

3
-scale model of the 

prototype, made of alloy steel, having 2 
equivalent internal T -shaped ribs and 8 
equivalent internal T -shaped stringers. Modal 
tests are performed both on the model and 
prototype (Fig. 2). A three cable soft suspension 
system is used to provide free-free boundary 
condition for model and prototype. An 
electromagnetic shaker driven by a power 
amplifier, and generating a random excitation, is 
used for exciting the model and prototype into 
vibration. The response is measured using 
piezoelectric accelerometers in the radial 
direction on 68 points of the prototype and the 
corresponding points of the model. The 
excitation force is measured by a force 
transducer and a spectrum analyzer is used to 
extract frequency response functions (FRFs). 
The form of measured FRFs is accelerance. 

a) Modal testing of the model b) Modal testing of the prototype 

Fig. 2. Modal testing using an electrodynamic shaker 

Modal parameters of 6 primary modes are 
extracted through curve-fitting the set of 68 
measured FRFs for either of model and 
prototype. Having the natural frequencies of the 
model obtained, those of the prototype are 
predicted using the similarity relations. The 
predicted natural frequencies using similarity 
conditions are compared with those extracted 
experimentally through modal testing of the 

prototype and the results for the 6 primary 
modes are listed in Table 1.  It is clear from 
Table 1 that similitude theory as used here 
yields an excellent accuracy. Therefore it is 
possible to predict the natural frequencies of a 
stiffened shell with a good accuracy through 
designing a small scale stiffened shell, having 
equivalent stiffeners with simpler cross section 
profile, made of dissimilar material by means of 
similitude theory. Referring to Table 1, it can be 
seen that there exist modes having the same 
wave numbers, but different frequencies, both in 
model and prototype. The reason is that for the 
mode shapes where n=4 the frequency of 
symmetric and antisymmetric mode shapes 
differs as a result of the number of stringers 
being 8 [19] [20]. As seen before, in the case of 
complete similarity conditions being satisfied, 
the non-dimensional frequency parameter 
defined as below 

4ML

D

 

(24)

 

will have the same value in model and 
prototype. Thus if the frequency response 
functions of model and prototype is plotted 
versus non dimensional frequency, both of the 
frequency response functions should yield 
similar behavior. Therefore the vibration 
response of the model and the prototype can be 
compared throughout the frequency range of 
excitation for each of measuring points. One of 
such plots, comparing the frequency response 
functions of a distinct points on the prototype 
and its corresponding points on the model, is 
presented in Fig. 3. It is worth noting that this 
point on the prototype and its counterpoint on 
the model are located at similar positions with 
respect to the excitation point.    

Table 1. Results of prototype modal testing compared to 
those predicted by similarity. 

Mode

 

No. 
Prototype Freq. 

by Test 
Model Freq. 

 by Test 
Prototype Freq.

 

by Similarity 
Error

  

n m

 

(Hz) (Hz) (Hz) (%) 

1 3 2 20.8223 61.8732 20.201 -2.98

 

2 3 1 35.5957 109.8861 35.877 0.79

 

3 4 2 57.269 163.0589 53.238 -7.03

 

4 4 2 62.9106 190.0987 62.066 -1.34

 

5 4 1 91.7844 272.0469 88.822 -3.22

 

6 4 1 100.5191 301.168 98.330 -2.17
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Fig. 3. Frequency response functions of a sample point (No. 
53) on the prototype and its counterpoint on the Model.  

As shown in Figs. 3, the overall behaviour 
of the model and the prototype closely resemble 
each other, but in some cases such as third mode 
there exists a little inconsistency in the location 
of modal peaks. The first 6 mode shapes of 
model and prototype are compared qualitatively 
in Fig. 4. In order to quantify the comparison 
between measured mode shapes of model and 
prototype, Modal Assurance Criterion (MAC) 
is used. Originally designed as a means of 
quantifying the degree of correlation between 
mode shapes from experimental measurement 
and computer simulation [21], MAC can serve 
for this purpose. For comparing measured mode 
shapes of model and prototype, MAC can be 
written as 

2

P

P
P P

,

T
M r s

M T Tr s
M Mr r s s

m m

MAC 
(23)

 

where m is the number of vibration modes 
measured and M r

 

is the rth mode shape of 

the model and P s
is the sth mode shape of the 

prototype. Although no precise value is 
prescribed in references which the assurance 
criterion should take in order to guarantee good 
results, but it is found that a value in excess of 
0.9 should be attained for well correlated mode 
shapes and a value of less than 0.1 for 
uncorrelated modes. In some situations the 
boundaries for "accepted" and "non" correlation 

are quoted as above 0.8 and less than 0.2, 
respectively [22].  

 

a) 1st mode shape of model, 
 f=61.87 Hz,   n=3, m=2 

 

b) 1st mode shape of prototype, 
 f=20.82 Hz, n=3, m=2 

 

c) 2nd mode shape of model, 
 f=109.89 Hz, n=3, m=1 

 

d) 2nd mode shape of prototype, 
 f=35.60 Hz, n=3, m=1 

 

e) 3rd mode shape of model, 
 f=163.06 Hz, n=4, m=2 

 

f) 3rd mode shape of prototype, 
 f=57.27 Hz, n=4, m=2 

 

g) 4th mode shape of model, 
 f=190.10 Hz, n=4, m=2 

 

h) 4th mode shape of prototype, 
 f=62.91 Hz, n=4, m=2 

 

i) 5th mode shape of model, 
 f=272.05 Hz, n=4, m=1  

 

j) 5th mode shape of prototype, 
 f=91.78 Hz, n=4, m=1  

 

k) 6th mode shape of model, 
 f=301.16 Hz, n=4, m=1 

 

l) 6th mode shape of prototype, 
 f=100.52 Hz, n=4, m=1 

Fig. 4. Mode shape qualitative comparison.  

The MAC matrix so obtained, is presented 
in Table 2. As cleared from this table, the first 6 
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mode shape of the model are most correlated 
with the first 6 mode shapes of the prototype, 
respectively and the rate of correlation is about 
90 percent except for the first mode that this rate 
is about 85 percent. As mentioned in reference 
[20], there exist some causes of less-than-
perfect results other than uncorrelated mode 
shapes. One of them is the existence of 
nonlinearity in the test structure. In this case, 
since the less-than-perfect value is occurred in 
the first mode, the reason probably is the 
existence of nonlinearity as a result of large 
amplitude. 

Table 2. MAC as a means of comparing mode shapes of 
model and prototype.  

Prototype Mode Shapes 

 

1 2 3 4 5 6 

1 0.8536 0.0041 0.0115 0.0115 0.0074 0.0032 

2 0.0021 0.9242 0.0020 0.0020 0.0013 0.0021 

3 0.0009 0.0011 0.9296 0.0060 0.0376 0.0140 

4 0.0082 0.0007 0.0060 0.9296 0.0112 0.0110 

5 0.0031 0.0004 0.0237 0.0237 0.8976 0.0039 

M
od

el
 M

od
e 

Sh
ap

es
 

6 0.0059 0.0109 0.0214 0.0214 0.0019 0.9123 

 

8. Conclusions 

In this paper, free vibrations of stiffened shells 
having longitudinal and circumferential 
stiffeners, is investigated using scaled down 
equivalent model of the structure and through 
applying similitude theory. The necessary 
similarity conditions, or scaling laws, in free 
vibrations of orthogonally stiffened cylindrical 
shells are developed through 
nondimensionalizing the governing equations. 
Based on the similarity condition, the relation 
between natural frequencies of a replica scale 
model and those of its prototype is obtained. In 
order to overcome the difficulties encountered 
in fabricating small scaled stiffeners, design of 
equivalent cross section is explored that in spite 
of having much simpler profile, offer same 
vibrational effect in free vibration of stiffened 
shell. The results are also confirmed 
experimentally by designing and fabricating a 

scaled model of a typical prototype, having 
equivalent stiffeners, made of dissimilar 
material and performing modal tests to measure 
modal parameters of the model and the 
prototype. It is finally concluded that, scaling 
laws provide precise relationship between a full-
scale structure and its small-scale equivalent 
model, and can be used to extrapolate the 
experimental data of a small inexpensive and 
testable model into design information for a 
large prototype. 
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Appendix: Derivation of Nonlinear 
Equations of Motion and BC s 

Consider a thin-walled circular cylinder, 
stiffened by evenly spaced uniform rings and/or 
stringers. The only applied loadings considered 
in the analysis are an axial end load and a 
constant internal or external pressure load. It is 
assumed that the stiffeners spacing is small, so 
that the stiffener effect on the behavior of the 
structure may be averaged or smeared out. 

 

Fig. 5. Geometry of orthogonally stiffened cylindrical 
shell 

The Donnell-type nonlinear strain-displacement 
relations are [23] 
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(A-1)

where ,xT yT , and xyT

 

are the total strains, 

comparing to ,x y , xy

 

which are the strains in 

the middle surface 0z of the cylinder wall. 
The quantities ,u v , w

 

are the displacements of 
the middle surface in ,x y , z

 

directions, 
respectively and R

 

is the cylinder radius (Fig. 
5). The total strain energy of the stiffened 
cylinder,U , consists of the following terms 

c s r LU U U U U U

 

(A-2)

 

where cU

 

is the strain energy of a non-stiffened 
thin-walled isotropic cylinder and is obtained 
through substituting the above nonlinear strain-
displacement relations into the general strain 
energy equation and using Hook s law. sU  is the 
strain energy due to extension, bending, and 
torsion of stringers of spacing d attached to the 
shell and is obtained from the assumption of 
continuity of displacement in the cylinder and 
stringers and through averaging the effect of 
stringers over the circumference. rU is the strain 
energy of rings spacing l and is obtained in a 
similar way as sU . LU is the potential energy due 
to a constant axial load resultant xN

 

(positive in 
compression) applied along the middle surface 
of isotropic shell, and a constant hydrostatic 
pressure p (positive externally) applied over the 
shell. If ,u v , and w

 

are amplitudes of a simple 
harmonic motion with circular frequency , 
then U  is the potential energy of inertia loading 
at maximum deflection and neglecting in-plane 
inertia. Substituting terms of Eq. (A-2), the total 
energy at maximum deflection of the stiffened 
shell can be written in terms of stress and 
moment resultants as 

2

,
0 0

, , ,

2
2 2

0 0

2

0
0

1
2

1
2

R L

x x y y xy xy x xx

y yy xy xy yx xy

R L

R

x x L x

U N N N M w

M w M w M w dxdy

pw M w dxdy

N u u dy

 

(A-3)

where ,x yM M , and xyM

 
are the moment 

resultants per unit length and ,x yN N , and xyN are 

the stress resultants per unit length, defined as 
follows [24] 
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(A-4)

where sJ

 

and sI

 

are respectively moment of 
inertia and polar moment of inertia of stringers 
with respect to an axis parallel to the middle 
surface of the shell passing through its centroid. 

sA

 

is cross sectional area and s sG J

 

is torsional 
stiffness of stringers. D

 

is flextural stiffness of 
the cylinder shell. sz

 

is the distance from shell 
middle surface to the centroid of stringers and 

0sI

 

is the moment of inertia of stringers with 
respect to the shell middle surface. M

 

is the 
averaged or smeared out mass per unit area of 
the stiffened cylinder. h

 

is the thickness of the 
shell and c

 

and s

 

are mass density of the 
stringers and the shell, respectively. The 
parameters having subscript r

 

are similar 
parameters corresponding to the rings. It is 
worth noting that parameters rz

 

and sz

 

can have 
negative values, too (for stiffeners on the inner 
surface of the shell). 

Using Eq.(A-3) and by application of the 
principle of minimum potential energy 



 

11  

Scaled Down Models for Free Vibration Analysis of Orthogonally Stiffened 
Cylindrical Shells Using Similitude Theory

 
0U , the nonlinear equations of motion of 

stiffened cylinder and BC s are obtained as 

, ,

, ,

, , , , ,
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, ,
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(A-4)

A set of BC s (essential and natural BC s) to be 
satisfied at each end of the cylinder are 

, , , , ,

,

0 0
0 0

0 0
0 0

x x xy y yx y x x xy y

x x

x x

xy

M M M N w N w or w
M or w

N N or u
N or v

 

(A-5)
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